ZUR KENNTNIS DER BITTERSTOFFE AUS CNEORACEEN, III¹)

A. Mondon⁺, H. Callsen und B. Epe

Institut fur Organische Chemie der Universität Kiel

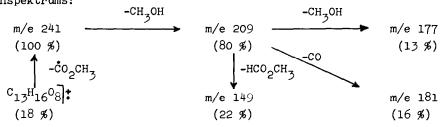
D-2300 Kiel, Olshausenstr. 40 - 60

(Received in Germany 7 January 1975; received in UK for publication 27 January 1975)

Wir berichten uber Untersuchungen zur Strukturaufklarung von Cneorin $\underline{\mathbb{C}}$, einem typischen Bitterstoff aus Cneorum pulverulentum (Vent.). Die Verbindung hat den Schmp. 199-200° C, ist optisch aktiv mit dem Drehwert $[\alpha]_D^{20} = +32.4°$ (c=1) und gehort nach der Summenformel $C_{25}H_{26}O_7$ zu den Sesterterpenoiden. Beim Ozonabbau und nachfolgender Oxidation erhalt man das Dilacton $\underline{\mathbb{I}}$ vom Schmp. 133-135°C und durch Umlagerung mit Saure das isomere Cneorin $\underline{\mathbb{C}}_{III}$ vom Schmp. 184-185° C, für das die Partialstruktur $\underline{\mathbb{C}}$ nachgewiesen ist 2 , $\overline{\mathbb{C}}$. Fur Cneorin $\underline{\mathbb{C}}$ wurden nach spektroskopischen Daten die Teilstrukturen $\underline{\mathbb{C}}$ und $\underline{\mathbb{C}}$ abgeleitet und das noch fehlende Sauerstoffatom einer C=0-Gruppe in einem γ -Lactonring zugeordnet 2 , $\underline{\mathbb{C}}$).

Die Partialstruktur $\underline{2}$ enthalt im Rest $c_{16}H_{13}o_{4}$ noch den Furanring der Teilstruktur $\underline{5}$, man findet daher im NMR-Spektrum bei tieferem Feld die typischen Signale der drei Furanprotonen, außerdem aber ein Singulett fur ein einzelnes Proton bei 6.60 ppm 3). Die Vermutung, daß dieses Proton einem trisubstituierten Furanring angehore 3), wird durch das UV-Spektrum von \underline{c}_{III} mit λ_{max} 215 nm (ε = 10200) und λ_{sh} 230 nm (ε = 6300) gestutzt, da zur Extinktion des ß-substituierten Furanringes mit einem ε -Wert von etwa 5000 ein Betrag gleicher Große hinzuzufügen ist.

Die Ozonspaltung von Cneorin \subseteq_{III} mit anschließender Oxidation durch Perhydrol sollte eine Entscheidung durch das Experiment herbeifuhren. Es gelang, das Rohprodukt in eine Mono- und eine Tricarbonsaure aufzutrennen, die als Me-


704 No. 9

thylester charakterisiert wurden.

Der Monomethylester hat die Summenformel $C_{12}H_{18}O_5$, schmilzt bei 75°C und hat IR-Carbonylbanden bei 1777 (γ -Lacton) und 1724 cm⁻¹ (Ester); sein 1 H-NMR-Spektrum 4) zeigt drei Singuletts für tertiare Methylgruppen, ein Multiplett für fünf Protonen von 2 - 3 ppm, ein Singulett für die Methylgruppe des Esters bei 3.73 ppm und ein Quadruplett für ein einzelnes Proton zentriert bei 4.21 ppm (X-Teil von ABX). Unter Heranziehung der Partialstruktur 2 für Cneorin 2 ist dem Monomethylester die Strukturformel 2 zuzuordnen, die auch dem Massenspektrum mit dem Basispeak m/e 227 und den Fragment-Ionen m/e 211,167 und 125 entspricht.

Schwieriger ist die Strukturermittlung der zweiten Komponente; sie liegt nur dlig vor, erweist sich aber im Gaschromatogramm nach der Destillation i.Hochvak. als einheitlich. Das ¹H-NMR-Spektrum⁴) zeigt Singuletts bei 3.71 (3H) und 3.86 ppm (6H) für drei Methylestergruppen, ein Singulett bei 4.82 ppm für ein einzelnes Proton und ein Multiplett für 6 Protonen zwischen 2 und 3 ppm. Das Signal bei 4.82 ppm ist dem Proton der Teilstruktur 6 zuzuordnen.

Aus dem Massenspektrum des Trimethylesters mit dem Molekulpeak m/e 300 wird auf die Summenformel $C_{13}H_{16}O_8$ geschlossen. Von den acht Sauerstoffatomen sind sechs fur die drei Estergruppen und eines für die Teilstruktur $\underline{6}$ vergeben, das achte muß einem γ -Lactonring angehoren (s.o.), so daß die Teilstruktur $\underline{6}$ zu $\underline{7}$ erweitert werden kann. Es wird daran erinnert, daß in $\underline{6}$ und ebenso in $\underline{7}$ das C-Atom neben der C-H-Gruppe quartar ist. Nach der Summenformel $C_{13}H_{16}O_8$ ist das Gerüst von $\underline{7}$ um die beiden noch fehlenden Estergruppen und die Differenz C_3H_6 entsprechend drei Methylengruppen zu erganzen. Es muß dies in der Weise geschehen, daß ein weiterer Ring hinzukommt, um der Zahl 6 für Doppelbindungen und Ringe zu entsprechen. Von zahlreichen moglichen Formeln bleiben nur die Strukturen $\underline{8}$ und $\underline{9}$ übrig, alle anderen scheiden wegen spektroskopischer Daten oder aus biogenetischen Gründen aus. Zwischen $\underline{8}$ und $\underline{9}$ laßt sich noch keine Entscheidung treffen, auch entsprechen beide dem Fragmentierungsschema des Massenspektrums:

Addiert man die C-Atome der Carbonsauren, die den Methylestern 3 und 8 oder 2 zugrundeliegen, so ergibt sich gegenüber dem Ausgangsmaterial 2 eine Differenz von vier C-Atomen, drei gehen durch Aufspaltung des Furanringes der Teilstruktur 5 verloren, eines aus dem eingangs postulierten trisubstituierten Furanring im Zentrum des Molekuls, andererseits entstammen drei Carboxylgruppen der Abbauprodukte 3, 8 oder 9 den restlichen C-Atomen dieses Ringes. Mit dieser Annahme lassen sich jetzt aus 3 und 8, bzw. 3 und 9 je zwei Formelpaare vom Typus A (1,2) und B (1,2) aufschreiben, von denen bei Berücksichtigung der Teilstruktur 4 fur Cneorin C das Formelpaar B (1,2) ausscheidet.

Von den beiden verbleibenden Strukturen $\underline{\underline{A}}$ (1) und $\underline{\underline{A}}$ (2) wird $\underline{\underline{A}}$ (1) nicht nur aus sterischen Gründen der Vorzug gegeben, mehr Gewicht haben hier noch Vorstellungen zur Biogenese der Bitterstoffe, die spater dargelegt werden sollen.

Nachdem die Struktur fur Cneorin $\underline{\underline{C}}_{III}$ durch den Ozonabbau bekannt ist, sind alle Strukturelemente zur Formulierung des Sesterterpens $C_{25}H_{26}O_7$ verfugbar: aus dem Dilacton $\underline{\underline{1}}$, der Teilstruktur $\underline{\underline{4}}$ und dem Tricarbonsaureester $\underline{\underline{8}}$ ergibt sich für Cneorin $\underline{\underline{C}}$ die Strukturformel $\underline{\underline{10}}^{5}$, die wir als Arbeitshypothese weiteren Untersuchungen zugrunde legen.

$$0 = 0$$
 H
 0
 H
 0
 H
 0
 H
 0

Die Arbeit wurde durch Mittel der Deutschen Forschungsgemeinschaft gefordert.

Literatur

- 1) Inhaltsstoffe der Cneoraceen, VII. Mitteilung.
- 2) A.Mondon und H.Callsen, Tetrahedron Letters 1975, I. Mitteil. im Druck.
- 3) A.Mondon und H.Callsen, Tetrahedron Letters 1975, II. Mitteil. im Druck.
- 4) Angaben in δ (ppm), 60 MHz, für Losungen in CDCl₃, TMS = 0.
- 5) Formulierung zuerst im Arbeitsbericht vom 22.2.1974 an die Deutsche Forschungsgemeinschaft verwendet.